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:_ PREFACE

This report was prepared by Beech Aircraft Corporation, Boulder Division,
. Boulder, Colorado, under Contract NAS 9-12105, Hydrogen Thermal Test

Article (HTTA), from the Manned Spacecraft Center, Houston, Texas.

:_ This "Pressure Control and Analysis Report" is the result of tasks which

were accomplished during the HTTA Program study .r_.riod, including:
: (1) perform a literature review to provid_ system guidelines; (2) develop

the anaZytical procedures needed to predict system performance; (3) design

and analysis of the HTTA pressurization system considering (s) future uti-

o... llzation of results in the design of a spacecraft maneuvering system

_ prope!lant package, (b) ease of control and operation, (c) system safety, _

_. and (d) hardware cost; and (4) make conclusion and recommendation for
systems design. _,

PR_CEDINO PAOI_LANK NOT F/LM_)
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I f F _

NOTAT ION

C = ratio of-wall-to-gas effective thermal capacity

6 = specific heat at constant pressure
P

D = equivalent tank diameter (diameter of a cylindrical volume

having same total volume and wall surface area as tank
I.

under investigation)

h = gas-to-wall free convection heat transfer coefficient i
c

p = tank pressure during liquid expulsion

= heat flux from ambient to tank wall, per surface area of

wall .

Q = ratio of total ambient heat input to effective thermal I

capacitance of gas I -
1

t
S = modified Stanton number l

t = equivalent tank wall thicknessw

T = pressure inlet temperatureo

T = saturation temperature of propellant at initial tanks
pressure

w = total pressurant mass
P

o ffi total pressurant mass under condltxons of zero, heat: and
Wp mass transfer

Wp/Wp ° = collapse factor

_V = expelled liquid volume

OT = total liquid outflow time

f = density

Subscripts

G refers to gas

_:, W refers to well

_m
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NOTATION (Continued) _"_-"

Superscript i" _-
0 refers to variables at a temperature equal to inlet i

pressurePressurantduringtemperatUreexpulsion.anda pressure equal to tank t./;

" 12

£
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I

COMPONENT IDENTJ rICATION

Fill Valve - FV

Isolation Valve - IV

Shutoff Valve - SV

Three-Wa y Valve - YP

Check Valve CV

Pressure Regulator - PR !/

• High-Pressure Pump - HP l

Turbine - G_

Control Orifice - CO

Heat Exchanger HX

Burst Disc - BD

Relief Valve - RV

Flow Meter - _M

Circulation Fan - CF

Pressure Switch - PS

Pressure Transducer - PP

Gas Generator - GG

Expansion Valve - EV

Remote Operated Va rye - ROV

Solenoid Valve -. SO_

Thermal Conditioning Unit - _CU

-|
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, REPROD UCh_ILIfY OF THE' ORIGINAL PA(_E i3 POOR

; _ 1.0 INTRODUCTION
!

The purpose of this report is to define an optimized pressure control system

for the Hydrogen Thermal Test Artlcle (HTTA). The report covers the follow-
ing three basic considerations for pressure control:

I. pressurization technique selection
2. external pressurization considerations

3. relief system considerations design criterla and selection

The purpose of a pressurization system is to provide stored energy which

.t can be utilized in the expulsion o£ the liquid propellant for spacecralv
t requirements. Several different types of gas generating systems e_t and

they have been analyzed in previous pressurization system studies L1j.
Some of these systems are:

I. stored gas

2. evaporated propellants ,_
3. evaporated non-propellant

4. products of chemical reaction _"
5. mechanica I expulsion

For any given mission, several propellant pressurization systems may be

capable of meeting the performance requirements. Therelore, the advantages
and disadvantages of each system must be considered in the selection of the

most suitable system, A generalized breakdown of the advantages and dis-
advantages of variou_ pressurization systems are _hown in Table I.

_ABLE I
Type of Pressurl-

za lion 6__m____ Adva._._nt_a_es Disadvantage_s

Stored gas S1mpllcity Weight

Availabil ity of Vr)Iume :"

Components ;I"

Evaporated Single Fluid External Energy or
Propellant Large Heat Exchanger

Evaporated We zgh t Comple xt t y _,
Nonpropel lant _o I ume External Energy

Combust Ion We ight Contaminat ion by
Products Volume Sol ida

Cost Repressurizat ton
after Coast

Restart

Mechentca] Weight Complexity

Expul a ion Volume Rel Jabi I i ty
Cost

l.t 15465 *
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i

To select the most suitable system, the relative performance of the various

systems must be e,/alu._ted. Qualitative and quantitative factors must be

established for each candidate system and the final selection made after

consideration of these factors. Examples of the two categories of factors ! "_

are shown.
]

Qualitative Factors Quantitative Factors I '

Propellant Compatibility Rel1:_btlity i

Misslon Life Capability _;'eight !

Restart Capability Size _iVariable Flow Capability Control Accuracy

Cost _
! -

Some of the quantitative factors could become qualitative factors il _"

future system design dictates maximum _nd/or mlnimum'values such as I

reliability, weight, _nd s_ze (volume). These quantitative factor i :
values have not been specified for the HTTA. QualiTative factors were

either acceptable or not, i.e., "go or no-go" and il the particular i _

pressurization system under study did not meet the requirements, it was iI*eliminated.

The stored gas type of pressurization system was selected for use on HTTA _ _"

a_d analysis was limited to this type of system, i

i:!

_ lilt 15465 i_

;; -=-

1976015192-008



_,+.-_ i_ _ _. _ _ ,._,

(

? 2.0 LITERATURE I{EVIEW - SUM_RY

Two approaches have primarily been taken in the design of gas pressuri-

zations systems, Most investigators _2, 3, --4]have considered either

stored gas or recirculation-type pressurizatlon systems or both. The "

(23 pressurization study concerned itself with theGrumman-Boe ing

analysis of a cold autogenous gas tapped off the Orbit Maneuvering System

engine. Lockheed's E:_ systems optimization study primarily investigated
both stored gas and recirculative-type pressurization systems, the _._"

hiResearch reports _43 were concerned with the study of reclrculation-
type pressurization systems.

" 2.1 Shuttle Orbiter Reports v'

A review was made of the Grumm_n-goeing study , tile only Alternate

Space Shuttle Concepts Study currently available to Beech_ concerning

the pressurization system of the Orbit Maneuvering System. The report k_.

recommends cold autogonous gas tapped off the Orbit Maneuvering Svstem i

engine for tank pressurization. This type of system has the inherent
advantages of not requiring a helium system or use of Attitude Control

Propulsion System conditioning. The operating characteristics of the

system are shown schematically in Figure 1. This simplified schematic

shows the salient features of the a,_togenous pressurization system

during steady-state Orbit Maneuvering System operatlon.

2.2 Cryogenics S_::.tems Optimization St__udy

The Lockheed optlmization study w_._ originally Jormulated wlth the

baslc premise that helium gas would not be used as the pressurant for .
LH_ tanks. This premise was established because the solubllity of

helium gas in LH 2 creates.a fuel cell contamination problem. However (_./due to the small-amount of gas requlred, hellum gas was considered as

a prepressurant to produce engine startup in recireulation-type pres- I

J

surizatlon systems Helium was considered as a pressuranI in the

Orbit Maneuvering System/Attitude Control Propulslon System integrated

system since the luel cell system was not included. Ambtent_ as well i

as cold storage of the helium, was considered in the optlmization "

analysis,

The Thermodynamics Optimization Program (computer program) completed

by Lockheed E3) lor a nonintegrated system xndicatcd that the helium
pressurant weight would be greater than the combined weights of a

prepressurant and a pressurant using hydrogen gas. In addition, the

weight of boiled-off liquid during the pressuri _,_dflow process is
larger for a helium than for a hydrogen pressurization system. The

i optimization program provided a parametric analysis which included
the following variables:

)

[ .
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q

I. pressure inlet temperaturo

2. expuls_,*n pz'_ssure

3. vent pressure

4. insulation thickness

5. tank geometry -

6. duty cycle

The various types of nonintegrated prepressurizatlon and pressurization
systems analyzed in the optimization study, utili_ing the above combin- ,._

atlons of variables, includlng their advantages and disadvantages_ are

listed in Table IS. In the analysis both the prepressurizatlon and the

pressurization functions were controlled by the same pressure control

--- components,

The candidate subsystems _ere analyzed for system composition and

arrangement, operation modes (including redundant conslderations'I,
structural and therm_l conslderat_ons, and fluid utilization, two

different noninte_ratcd system concepts were analyzed for nominal oper-
ation _onditions 1.3_ •

The selections provided for gaseous hydrogen as the pressurant with one

case using a gaseous helium prepressurant. The pressurant supply condi-
tions were:

' System 1 - OH at 37 u to 520'R at 0 t.o 4000 psia2

System 2 - GH2 at 37°R at 20 psia

SYSTE M 1 - The hydrogen propellant tank was pressurized during

engine operation by gaseous hydrogen supplied by a , •
rectrculation-type pressurization system heated by "'/_

the engine nozzle. Propellant orientation devices
were used to initially supply gas-lree propellants

for engine start until propellant orientation was

maintained by engine operation. The tank pressure

; was controlled by tank pressure swztches that

operated flow control valves During perzods that

the engine was not in operation, the tank pressure

t was controlled by a thermal conditioning unzt.

The schematic for System l is ._hown zn Figure 2
} and the corresponding characteristic data zn

Table l I I.

SYSTIM 2 - This system used stored gas propellants for tank
prepressurtzation. During engine operation the

tank pressurization was accomplished by tapping off

propellant downstream of the propellant tank boost

pumps and vaporizing it in heat exchangers. Tank
pressure was controlled by s combination orifice/

regulator where the orifice supplies minimum

/
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pressurant and tile regulntor accommodates ptak
demands.

During periods that the engine was not in oper-

ation, as tank pressure increased, the ullage
was vented to space through tank wall heat

exchangers (vapor cooled shield) with part of

the incoming heat being intercepted. Propel-
lant orientation was required for Liquid

delivery. The schematic for this system is , _
shown in Figure 3 and the corresponding °
characteristics data in Table IV.

In addition to the nonintegrated systems aN lyzed, various integrated

systems analysis were performed by Lockheed. This analysis resulted in

several different integrated systems wiib varying degrees of integration.
For the purposes of this pressurization analysis, two integrated systems

will be used as HTTA design guidelines. These are: 1) integrated Orbit

Maneuvering System/Attitude Control Propulsion System with common pumps

as shown in Figure 4, and 2) integrated Orbit Maneuvering System/Attitude
Control Propuloion System with pumps a_ engine as shown in Figure 5.

These selections provide two different pressurant supply gas conditions.

They are:

1. GH2 at 2000 psia & 250:R {Figure 4)

2. GHe at 4000 psia & 37_R (FiguIe 5)

2.3 Stud_ of External Pressurization Systems - AiResearch

h review of the monthly progress reports from A1Research Manufacturing

Company _4_ was made. The reports described work performed during a .,Q
period between 15 July 1970 and 15 May 1971 under Contract No. NAS9-10453

for NASA-MSC. The contract was concerned with the study o! recirculation

type pressurization systems for pressure control oi cryogenic storage

i systems. The information developed was to yield flexibility in design of
; cryogenic systems and low cost replacement of dynamic components that are

external to the cryogenic pressure vessel.

The reports contain information on preliminary cor,lponent selection and f

results of the tankage thermodynamic analysis. The components consldered

were heat exchangers, recirculatlon loop lines and pumps and fans. The _,

results of the tankage thermodynamic analysis determined the recirculation

rates required to maintain given pressures. Thls analysis covered the

following cases:

• subcritlcal end supercrltlcal

• varying return temperatures
• complete mixing and complete nonmixing

• both liquid and vapor reclrculatlon for su! rltlcal tanks

ER 15465 _
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; _ In addition to the above, the thermodynamic analysis calculated the

required heat addition rate and the pressure drop due to mixing of the
stratified cases.

Considering the mass flow requirement of the HTTA, the amount of energy
needed to vaporize cold liquid would require a rather large heat

exchanger or very high temperature gas source for the hot side of the
heat exchanger. /

Although the use of recirculated pressurization system has been con-
sidered for the Shuttle Program, the use of this type system for the
HTTA is impractical due to the added hardware involved. However, the

_. use of stored gas pressurization can be related to this type of system 4
and still make use of simpler, less expensive hardware associated with
the stored gas system.

d
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3.0 PRESSURIZATION SYSTEMS ANALYSIS

3.I Selection of Pressurization Syste _ /

Gaseous hydrogen hgs been selected as the primary pressurant for the HTTA

tank. This selection was based on the requirements outlined in C2, 33 .
The HTTA tank design and testing are bas.,don parameters that applied 0

initially to the Space Shuttle Orbit Maneuvering System. However, modifi-
cations have been made to facilitate a 180-day mission. The original

7-day mission duty cycle has been assumed to be as shown in Figure 6.

The 180-day mission duty cycle has been assumed to be a full tank at the
initiation of pressurlzat£on system operation, since thermal analysis
indicates the boiloff mass will be small. ¢

The selection of the pressurant for the HTTA was narrowed to either heli,,m

| or hydrogen gas based upon the compatibility requirements between the pres- _o
surant and the propellant subsystem. When considering missions with _" _,

multiple restart requirements and relatively long coast periods, the _qui-

librium temperature of the ullage will decrease to approximately the

original bulk propellant temperature. If the pressurant freezing t _p-

erature is above the initial bulk temperature of the propellant, s,_ids
may form and interfere with the operation of the propellant feed _,d vent

i "systems; therefore, pressurants with freezing temperatures at or below

liquid hydrogen temperature must be used; i.e., hydrogen or helium

gas.

i The stored gas type of pressurization was selected for use on the HTTA. .- _
Consideration was given to simplicity, cost, and restart capability in

the selection of the type of system to be used. An analysis has been

performed for a stored gas type of pressurization system using gaseous
hydrogen as the pressurant. This combination will be used du. ing testing.

Moreover the test data obtained may be adapted to the analysis of an "_

evaporated propellant (recirculatlon) type system by the inclusion of
information related to a recirculation-type pressurization system.

The mission storage pressure of 17 psia was selected [or compatibility

with the Cape Kennedy ground service equipment dewar p_essure capability.
Minimum boiloff loss would be achieved by allowing the liquid to absorb

part or all of the heat leak. However, the resulting higher operating

pressures would bring about greater pressurant and residual fluid losses.

Rising fluid temperature and pressure also necussitate more complex _
pressure and dellvery control systems. Therefore, constant pressure
operation was considered advantageous. For constant pressure operation

the lowest possible pressure provides thermal optimization. Overall
heat leak was found to be insensitive to the short periods of ullage
pressurization required to obtain the flow rates of 8.0 pounds per second
for 3.5 minutes, the flow requirements for the HTTA. The pressure of
25 psia for high flow conditions was selected to allow s feasible
pressure drop of 4 psi during flow from the tank outlet to the feed line
coupling and maintain the required 4 psi above the saturation pressure of
17 psis.
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Since the pressurant gas temperature requirements have not been specified

)_ for a 180-day mission, _ typical system configuration was chosen which
would represent a mJd-range pressurant gas mass transfer requirement.

The pressurant inlet temperature of 250°R was selected primarily for two
reasons •• m-

I 1) The literature review indicated (see Section 3.3) that

the gas-to-liquid heat and mass transfer would be :'

negligibly small if: (a) the incoming gas does not _
impinge upon the liquid surface; (b) the system has low

pressurant inlet temperature; and (c) _he tlme of trans-

fer is short compared to the ef_ectlve time of xnter-
• facial transport.

2) Gas pressurant requirements are reduced as the inlet

temperature increases. .
,Ja"

Considering the above considerations, the select.ed gas inlet temperature

is felt to be a satisfacLory compromise t,o provide minimized pressurant

gas quantity and minimized evaporation of stored liquid• The HTTA has

been designed such that maximum technology will be generated and verified

' utilizing this unit. The intarnal pressure may be vsrled from 25 to 50 =

i psis and any useful inlet temperature may be studied, i,__
# i

! 3.2 Gas Pressurant Requzrements

When a predetermined qaantity of cryogenic liquid must be transferred

from a storage vessel w_thin a certain time interval, two techniques have
i

been used- pumps and ullage pressurization. Both techniques are in

widespread use, each being more _uitable for certain applications. Pumps

are ususlly used in appllcations requiring low flow rates and long

pumping times. Gas pressurized systems have been preferred in appll- i,_

cations involving high flow rates• , "

One of the chief disadvantages of an ullage gas-pressurized system in _:

the past has been the difficulty of estimating the quantity of gas

required to pressurize the ullage• Two calculation methods exist for _'"
the determination of the mass of pressurant required to transfer s cryo-

genie propellant: (I) distributed parameter systems, and (2) lumped

parameter solutions.

The distributed parameter systems are recommended for very precise cslcu o

lsttons, particularly when varying inlet g_ temperatures, ambient temp-
erature, or ambient heat flux cond_tions are to be accounted for, and when

i extensive, detailed information about the behavior of the system is needed.
The advantages of the lumped parameter solutions are that simple fortu of

the LJplmee transform methods and/or finite-difference approximations c|n

• be used. Analyses are thermostatic in character and are useful in

obtaining approximate answers for design purposes. Customarily only mean
properties of the gas and tank wall are determined.

ER 15465 | o
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_' After an extensive review ,_f the literature, predictions _,[ the transient ,

pressurant requirement_ were evaluated based on an equatxon presented by

Epstein and Anderson _8] . Their equation is based on computations_from_a

generalized distributed parameter pressurization computer program _, 1_ ,
for the prediction of total pressurant requirements in any axlsymmetrlc

liquid hydrogen or oxygen tanks pressurized with evaporated propellant or

helium. The generalized computer program is a modified Roc[:etdyne tank

pressurization program that can be used to predict total and transient t

pressurant requirements and ullage temperature gradients with an accuracy

of _5 percent. Epstein and Anderson's equation, when compared with data, , _
has a maximum deviation of 12 percent. This deviation is acceptable for

this analysis since the data will only be used for sizing pressurant

.._ flow system components, and adequate tolerances will be included in the

selection process. The prediction equation developed in reference 7
was used for this analysls. This equation, Includlng the fixed constants

appropriate for hydrogen or helium pressurant, is:

D - exp (-4.26 S0.857= - 1) - exp (-0.330 C0"281 + -
Wp.

I ) ( _ ) Q0.9 (1)x exp 1.50 ( I +'---'_

[°II lwhere C = (pCp t)_ (2)

(pc)" D ""/
PG

(,

wp° = P G AV (S)
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The range of variables covered in the computer runs used in obtaining

Equation (I) are shown ill Table V.

TABLE V

Ranges of Variables Covered in Computer Program

Spherical tank diameter 5 - 30 ft

Ellipsoidal tank diameter 5 - 30 ft

Cylindrical tank diameter 4 - 35 ft

Wall thickness 0.I - I in

Ratio of pressurant inlet temperature
2 - 15 '*_

to propellant saturation temperature

Total outflow time 200 - 500 sec

Ambient heat flow 0 - 10,000 Btu/hr-ft 2

The design of HTTA falls into the range of variables covered in Table V.

However, analysis was performed for time intervals below the range given

to afford a best guess of the rate of mass required. This rate was

needed to determine proper sizing of the flow ystem. The equivalent

diameter D in Equation (1) represents the diameter of a cylindrical

volume having the same wall surface area and total volume as the tank

under investigation and could be considered as the hydraulic diameter. . :
The wall thickness t in Equation (I) is defined as the total volume of

container metal dlvi_ed by *,he total internal wall surface area. The

gas-to-wall free convection heat transfer coefficient h is calculated
c

at a film temperature equal to (T o 4 Ts)/2 and at a temperature d_ffer-
ence of T - T .

o s

Epstein and Anderson state that care should be exercised when using their
esti_tion equation -

(I) outside the limits shown in Table V ,

(2) for short duration expulsion (on-off operstion)

_3) where massive condeLsstton occurs at the gas-liquid interface

(4) when the initial gas ullaEe volume exceeds 20% of the total tank volume

(6) when high ambient-to-tank wall heat fluxes cause appreciable evap-
oration of propellants at the tank wells.

DD 1546S
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A sample calculation for the total pr_,ssurant requirements is presented and
: proceeds as follows:

Test Conditions

?ressursnt Hydrogen

Pressurized liquid Hydrogen

Equivalent inner tank diameter, D = 79.090 in 6.591 ft _ _

Equivalent tank wall thickness, t 0.1646 inw

Pressursnt inlet temperature, T 250°R !o

;'" Tank pressure, p 25.0 psia ,

Total outflow time, 0 t = 3.5 min 0.0583 hr

Ambient heat flux, _ 0

lxpelled liquid volvme, _V 383.3 ft 3 "_
1

Properties

M_leculsr weight of pressursnt 2.018 lb/lb mole

SpecLfic heat of pressurant st p & T c _ 2.96 Btu/lb -°R
o' PG m

Saturation temperature of liquid at pO T 39.86 "R
S

Tank wall (2219 AI. AI.) density, _w 0.102 Ib /in 3
I

Specific heat of wall st To, c o 0.140 Btu/Ib -°R
Pw m

@

Cslcul_tions .,,_

Film Temperature, (T + r )/2 144.93'R
0 S

Temperature difference, T - T 210.14'_Ro s

Heet transfer coefficient, He _6_ 7.48 Btu/hr/ft2°R

TO,
o

Pressursnt density st p h O 0.0198 Ib _t 3
) G m ,

Bubstitutln8 In_o Rquations (2), (3), (4), and (5) gives

rcoc °t)'l [_]
c / ? P, o Wl . (.102) (2728) (.140) (.1646) 39.86= I(,@c ) DI (.0198) (2.96) (79.090) 2""_ = .13971

L) P o .J

B l_SS
l

o_o- !

i

........ t
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L

h e T 1c _ (7.48) (.0582) 39.86
S = - - .18010

(_Cp)_D To (0.0)o8) (2.96) (6.591) 250

_1 e T
Q = = o

(_c)o Dz °p u

Wp° . _oG &v = (.0Z98) (383.3) : 7.589

T

_"° - 1 = 250 1 = 5.272 T39.86
s

Substituting into Equation (1)

--,.Bwo : 5.272) - exp .330 (.13971_ "28
P

• ,id._

= (5.272) (.17288) (.62483) _ 1

w

-'Y'- = ] 5695
W 0

p

Then
W

w = w o (w-_o)__ = (7.589) (1.5695) = 11.911 lb. H2[ P P

g_ p
|
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In Figuru 7, predicted pressurant requirements are shown as a function of
: outflow time for both helium and hydrogen pressurants at tank pressures of

25.0 and 50.0 psia.

3.3 Interfacial Phenomena

Interfacial transfer of heat and mass is intimately associated with both

pressurization and stratification phenomena Knowledge of £nterfacial

phenomena is very incomplete due to the coupled nature of the simultan-
eous transport processes in the liquid and gas phase at the liquid-vapor _-_
interface.

_. Past experience leads to three generalizations _5_ : (1) the interracial
temperature Is essentially that of equilibrium (saturation) conditions ,.

corresponding to system pressure; (2) during pressurized discharge, both
$

condensation _nd evaporation of the cryogenic propellants at the inter-

face are pos_.ole, but usually are not sxgnificant factors: and

(3) during self-pressurization of liquid containers, interfaclal evap- _
oration occurs and the system pressure is governed by the vapor-pressure

characteristics of the phases at the interfacial temperature.

Mass transfer by condensation or evaporation at a vapor-liquid interface
depends on the relative rates of heat transfer from each phase at the

interface. When heat transfer from the vapor to the liquid dominates,

evaporation will occur at the interface; when the opposite Is true,
the vapor will condense; if the respective heat transfer rates are the

same, neither evaporation nor condensation occurs _nd the interface

remains stationary. These circumstances will exist generally. For
physical systems having convective action in both phases adjacent to

the interface, there is no known formulation for predicting the inter- ",

facial transport of heat and mass. v

Epstein, Georgius, and Anderson _6_ in their mathematical model of a -_i

pressurized propellant tank that is the basis of a computer simulation

program _ make the following assumptions concerning the interracial
phenomena.

(I) Evaporation or condensation may occur at the gas-liquid interface.
Which of these takes place and at what rate depends upon the heat

transfer rates in the gas and in the ]_quld near the interface. Evap-
oration which is due to heat flux from the tank wall to the liquid is

neglected_ and bulk boiling of the liquid is assumed absent. >_

(2) At the gas-llquld interface the vapor is assumed to be in thermo-

dynamic equilibrium with the liquid. Hence, the temperature of the
interface Is the boiling point at the local partial pressure of the

vapor, which must be below the crltical pressure.

The resulting studies involving the use of the pressurization computer
program_lO_ indicated that the he3t transfer from the pressurant to

the container walls is of prime importance. Only in systems involving

_ ER 15465
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_. high pressurant inlet temperatures and small tank size should gas-to-

liquid heat and mass transfer have an appreciable effect during a fast
transfer process.

Oluck and Kllne C .-71 used a gas-phase enventory method to determine the

quantity of interfacial mass transfer from experimental evidence. The

effect of mass transfer on gas requirements was found to be negligibly
i small for the conditions studied; i.e., a quiescent gas-liquid inter-

fsce and low heat leak from the ambient.

The consensus in the literature is that the gas-to-liquid heat and mass
transfer will be small if:

(I) the incoming gas dges not impinge upon the liquid surface,

(2) the pressurant gas has s low inlet temperature, or

(3) the system embodies a relatively large tank.

C_nsidering the 7-day duty cycle, Figure 6, no time effects will be _
introduced providing the system is depressurized after flo,_has occurred.

The 180-day profile, having not been defined, was assumed to be I80-day#

storage, then flow, and therefore, will not introduce interfacial

i problems. The proposed design of the HTTA has all of the above character-

i istics. Therefore, it is assumed that the heat and mass transfer at the

gas-liquid interface will not introduce interfacial problems.

i
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4.0 SYSTEM DESIGN FOR |ITTA

4.1 Pressurization Hardware Description

The hardware required for control of the pressurization system was incorp-

orated Into a valve module assembly. Several preliminary designs of t_b._

valve module were considered. Designs investigated were att:_C_ed, detach-

able and floor mounted systems. The advantages and d_i|dvantages of a
detachable vs. attached modu)e are shown in Table il.

The detachable module was selected because of the Increase in valve per-

formance, fewer components, and ease of transportation and handling. A
small increase in pressure drop and additional coupling costs were minor

disadvantages. The floor mounted system was eliminated because of : --
increased cost, longer feed lines, apd the resulting higher pressure

drop.

Components and line sizes for each type of system are shown in Figures 8
and 9. All valve module components were selected wlth consideration

being given to dependability, reuseabillty, maintainability, and thermal

performance. The valve module was designed such that critical parts,
i.e., valve seats, can be replaced withot_t removal of the component from
the lines.

The vslve module is supported from the HTTA girth rings. Exterior
coupling interfaces are symmetrieS) about the HTTA horizontal centerline
to facilltat¢ connection of servlc@ lint_swhen testing the tank In the

inverted position. The feed/fill, vent flow and vapor cooled shleld

lines exit through the tank's outer shell perpendicular to the tank .
su..'face. The ullage pressure relief system is protected by rel.4ef
valves and rupture discs on the outlet side of the pressurant valve.
Pressurant flow is console-controlled by a direct acting dome-loaded
regulator In series with a solenoid shutoff valve. All materials in

contact with fluids are compatible with GHe, LH2, and GH2. LH2 transfer
lines _re stainless steel tubing with weld ends on all c Smponents.
Valve module electrical accessories are designed for safe operation in

a hydrogen environment. Test facility (I00 psi) gas supply is utilized

i to pressurize the cylinders which operate remote control feed/fill and _r_
vent flow valves. Bayonet coupling provide test facilzty interface for
the feed/fill vacuum Jacketed llne. The balance of the interface con-

nections are AN 37 ° type' fittings

i ER 1546 5
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TABLE VI

Detachable Module Evaluation

BISADVA AOBS

1. Extra set of bayonet fittings

w

2. Sllghtly larger llne loss

3. Install module before test
_J

4. Need hoist for attachment

5. Extra cleanliness precautions ,._,.,

6. More expensive mounting brackets _

7, Separate vacuum pumpout ports

8. Bayonet coupling mating 1_[_ _'' _ :'_ !_*'* '_ _ _L_

ADVA/_TA_S

1. Ease of transportation

2. Valves operate in upright position !

3. Less components "_

4. Cheaper components

5. Basier handling for leakage and proof pressure tests /

6. Simultaneous fabrication

7. Easier facility hook-up (more compatible for hard T

' wiring and plumbing) , _

ER 15465
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1

_, , Figure 8 "
?

ATTACIIED VALVE MODI.,q.,E

Bayonet Coupling (Typ)
2 1/2"

Vacuum Jacket _ \_ j.5

U q FM

Nt' ,, 1

3/4 Relief Vent (Typ)

AP _r 7i" Bo
II_ I1"1

-- -. ' -- -l][fl t
1 1/4" Pressurization _m(Typ) MV (3-Way)

3/16" /_ P PT
VC$

'
I_ (Inverted Posttton_ _'./ _] r

i Vacuum Jacketed Valve (Typ)
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i

2 1/2" Vent __

_ _ Vacuum Jacket _ , -

RV t "

1 " " _'* -g,f--- Relief Vent

,-- -_-_ --_-"-------__--/'Y----D -.

_ _ _/_/4'i Pressurlzati°n

'Vacuum Jacketed Valve

_- 2 1/2"F_ed/Fill _ _ t,r '. ,i

Bayonet Coupling (Typ)

i •
Detachable Valve Module ,

_._; Figure 9 _ _
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4.2 Pressure Drops in Feed and Pressurant Lines

4.2.1 F:ed Lines

For purpose of analysis, the feed lines were sized to facilitate the

delivery of liquid hydrogen to the feed line outlet coupling 4 psi

I (+ 0 psi -. 2 psl) above saturation pressure. The liquid hydrogen will be "

in equilibrium at 17 psia (see Section 3.1) prior to prepressurization

and the flow test. Therefore, the saturation pressure was assumed to

be 17 psia. The control pressure for transfer conditions was selected

as 25 psia allowing a 4 to 6 psia pressure drop through the feed line and "_

valve. A schematic of the feed llne analyzed is shown in Figure I0.

L

i

.o67Z.D.) "
.SR °

47.63 _ _0

l°N
49.77.

e.25 __ !

2.444 I.D. }

I

t

Figure I0
L

FEEDLINE SCHEMATIC
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The resistance coefficients, friction coefficients, and equivalent lengths

were taken from _9_ . The pressure drop breakdown is as follows:

TABLE VII

Equivslent

Resistance Item K L__/D L (Ft)
t

Entrance - Sharp Edge 0.5 50 10.18 !'_

Sharp Bend - 90 ° 60 12.22

Sudden Restrict ion O. 3 30 6. II

Line 2.067" I.D. x 8.3" .69

Bend 7,5" R x 30 ° 4 .81

Bend 47.63 R x 65 ° 40.8 8.31 ,_

Bend 6,25" R x 90 ° 12 2.44

Tee - Flow Thru 20 4.07

Valve - Gate Type - Open 13 2.65

Flow Meter 2.0

Line, 2.444" I.D. x 108" _"

The total pressure drop through the feed line and valve was calculated

to be 4.3 psi for the nominal transfer condition of 8 lb/sec flow rate

and s control pressure of 25 psla. Liquid will then be provided at a

pressure of 20.7 psls at the fluid outlet coupling.

4.2.2 Pressursnt Line Losses
,,,

The pressurant line losses (pressure drops) were calculated for the four i

pressursnt mass flow rates as speclfled in Section 3.2. The maxzmum flow

values (maximum slope of curves) were used for these pressure drop calcu-

lations. These flow rates ere shown in Table VIII. The pressurant system .'_

lines were sized to provide an acceptable pressure drop to facilitate

operstlon during test. The llne sizes and configurations used for the

analysts were as shown in Figures 9 and 10. The worst pressure drop
condition for the pressurant line was found to be transfer using the OHe

pressursnt st 50 psls. The calculated pressure drops are as follows:

TABLE V I I I

Pressursnt Pressure Flow Rate LIP

OHe 50 psts 0.223 Ib/sec II.0

OHe 25 psis 0.126 lb/sec 8.0

OH2 50 psts 0.108 lb/sec 5.1

OH2 25 psia 0.065 Ib/sec 3.8 ;
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4.3 Control and Operation

The HTTA will be designed to permit remote operation after the test
facility lines have been connected. All control valves and regulators will
be controlled from a remotely located test console. The flow meter and
pressure transducer outputs will be transmitted to the test console for
amplification and readout using standard test equipment. Limit switch
indications from the pneumatically operated valves will also be trans-
mitted to the test console.

4.3.1 Cool-Down and Fill Procedure

The tank will be filled in either the upright or the inverted vertical

positions. Both feed/fill and vent flow valves (pneumatically operated)

will be opened while all other valves and regulators will be closed.

Liquid hydrogen will then flow into the tank through the feed/fill line

and the hydrogen gas and residual purge gases will be vented through the

upper transfer line. The cool-down opera_ion will continue until all _..
lines and the pressure vessel are cooled down and temperature stabilized.
The pressure vessel will then be filled.

The remotely operated pneumatically controlled flow valves will be

operated from the test control console. These console centrals will

regulate electrlcal power to the solenoid pilot valves that actuate the

pneumatic operators. Limit switches on these pneumatic operators will
provide feedback of the valve position (open or closed) to the test
console.

4.3.2 Purging Operation

The pressure vessel may be purged_ prior to and after filling as required

by utilizing the pressurant system. The purge gas will be introduced into

the tank through the pressurant line with the solenoid valve and regulator '',
open. The purge pressure can be controlled by the dome loaded regulator

in the pressurant system. The residual gases in the tank may be vented
through the lower transfer line with the valve open,

4.3.3 Flow Test Operation

The flow test will be performed by flowing LH2 through the feed/fill
line while pressurlzing through the vent/pressuranz line. The pressurant

system connects to the vent/pressuran, line, upstream of the remote
pneumatically operated valve which will remaln in the closed position.
All other valves will be in the closed position. The tank pressure will

be maintained by the dome loaded regulator which will be controlled by a

hand loading regulator at the test control console. Tank pressure and
flow rate datn will be fed back by transducers and recorded at the test
control location.

4.4 Safety and Relief Operation

4.4.1 Pressure Vessel Relief S_stem

i
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q'he pressure vessel is prc)t_,cted fr(_m _werpressurlzation by a parallel

mounted relief valve and rupture disc located w,th no valve between the

vessel and vent port. The relief valve will be set at 56 psia and the

rupture disc designed to burst st 61 psis. These settings were determined

from the analysis which allowed a 5 percent tolerance on the relief i_"

; pressure and a 2 perceht tolerance on the rupture pressure. [!.

The relief system lines were sized for a maximum pressure drop of 3 psi I-

during the worst condition requiring relief flow (Case 2). The two

following cases were considered for analysis of the relief system require-
ments.

CASE 1

The IITTA loses vacuum in the annullas due to a leak in the vacuum jacket [_
with the pressure vessel being full _,[ LH . Ambient air flowed into the

annulus at a rate sulfic_ent to maintain _he annulus at near atmospheric

pressure. Liquid air will condense on the pressure vessel surface. The

calculated boiloff rate at this condition will be approximately 27 pounds I:

per hour of gaseous hydrogen. L

CASE 2

The IfrTA loses vacuum in the annulus duc to leak in the pressure vessel

while the pressure vessel was full el Ltl_: resulting in continuous

hydrogen v._por flow inro the annulus. Tl_e vucuum jacket, pressure relief

disc will relieve at approximately 20 p._ia. Hydrogen vapor continues

flowing into the annulus, maintaining 20 psta tn the annulus. The

hydrogen vapor temperature was assumed to be at an average between liquid

hydrogen temperature and maximum ambient temperature (140_F). 1'he

resulting boiloff rate for this case was approximately 240 pounds per
hour.

The relief system was arranged to provide a low pressure drop between
the pressuro vessel outlet and the relief valve a? _he maxxmum relief flow

conditions. The maximum pressure in ,he pressure vessel would be

56.2 psia since the relief valve would relieve at 53.5 psia * 5%. The

rupture disc would burst between the pressures o! 57.6 and 66.0 psia at
140°F.

4.4.2 Vacuum Jacket Relief S_st.__em

The vacuum Jacket will also be provided with a pressure relxef device for
the condition discussed in Case 2 above. _he reliel device will be

designed to relieve below the maximum pressure considered in the struc o

turn1 design oI the vacuum Jacket or the collapsin_ pressure of the
:- pressure vessel, whichever is smallest. The relief device will have a

tolerance of two percent or less. The vacuum jacketed lines and modules

will have separate relief devices if t:3e llne vacut_m jackets do not
_ communicate with the vacuum annulus of the tank.
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5.0 CONCLUS IONS

5.1 Pressurant Selection

Hydrogen gas will be used as the pressursnt for HTTA because evidence

axis'is to Indicate that a recirculation-type pressuriz_tlon system will
be the final selection on the space shuttle and similarity in this

respect is preserved. The recirculatlon-type pressurization syst?m C

appears to be more desirable than the stored gas system. A stored gas _'+_
system would weigh more and require a larger volume than the

reclrculatlon-type pressurization system.

" However, a stored gas system, utilizing hydrogen, has been selected r

for HTTA because it wll]: (I) require less hardware and hardware

development than a reclrculatlon-type pressurization system; (2) the

results will still be directly be applicable to a recirculetlon-type
system. , L_

The system is designed to also accommodate the use of helium gas as

the pressursnt when supplied by a stored gas system. The gas require-

manta are shown in Figure 7 of Section 3.2 for ho_h hydrogen and

helium pressursnts at entrance pressures of 25.0 and 50.0 psia and 250°R.

The pressurization gas mass transfer analysis determined that the mass

of helium gas required will be larger than the mass oL hydrogen gas

required for vressurlzatlon. Analysis also sho_s that a greater pres-

surant mass (helium or hydrogen) will be required for pressurization st

s system pressure of 50 psia than for a system pressure of 25 psla.

6.2 Design Selection

• ,t

The detachable valve _odule concept is recommended for the pressuri-

zation and flow control components because it provides for less compon-
ents, higher operations1 dependability, and easier transpcrtstion.

A dome loaded pressure regulator wlll be used for pressure control during ':
the high flow test. A blowdown system without a regulator was considered

+ but without a regulator a substantial inlet gas pressure decrease would

l gas supply was lsrge in comparison to the
OCCUr unless the qtored

pressurization gss required.
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